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Abstract-We present a cross-sectional kinematic forward model for the formation of duplexes with a perfectly 
planar roof thrust. The major assumptions are a constant dip and constant spacing of the ramps in the undeformed 
state and sequential deformation in the direction of tectonic transport, with equal displacement along each ramp. 
The model is based on a coordinate transformation that simulates flexural slip parallel to the active fault surface. 
This causes angular parallel folds and keeps the layer thickness constant, except in the forelimbs of the horses. 
Attempts by previous workers to simulate the formation of duplexes with a perfectly planar roof thrust, on the other 
hand, were based on the assumptions of constant bed thickness and bed length, or a different topology of the axial 
planes delimiting the forelimbs of the horses, and resulted in corrugated roof thrusts. We show that it is not possible 
to form a flat roof duplex type and preserve the forelimb thickness of the horses under flexural slip parallel to the 
active fault. We describe duplexes by three parameters which are the separation s between ramps, the ramp length 1, 
and the displacement II along the ramps. In a u/s vs I/s diagram, duplexes with a perfectly planar roof thrust, resulting 
from numerical experiments with our kinematic algorithm, occupy specific families of straight lines. Our results are 
independent of the dip or internal geometry of the thrust ramps. 0 1997 Elsevier Science Ltd. All rights reserved. 

INTRODUCTION 

Duplex structures provide a mechanism for slip transfer 
from a layer-parallel glide horizon at depth (floor thrust) 
to another at a shallower stratigraphic level (roof thrust) 
(Boyer and Elliott, 1982). Duplexes are blind thrust 
systems; the roof thrust is contained within the strati- 
graphic section and does not reach the surface. Slip 
transfer is sequential in the direction of tectonic transport 
and occurs along a system of footwall ramps (called 
ramps in this paper) that cut across the stratigraphic 
layering and link the floor and roof thrusts (Fig. 1). As 
each new ramp forms, the previous imbricate fault is 
deactivated and carried passively within the enclosing 
thrust sheet (Boyer and Elliott, 1982; Mitra and Boyer, 
1986). Displacement along each ramp is minor compared 
to that on the floor and roof thrusts. 

Natural duplex structures have been observed on 
various length scales in fold-thrust belts and often have 
a planar roof thrust (for example Elliott and Johnson, 
1980; Boyer and Elliott, 1982; Mitra, 1986; Mitra and 
Boyer, 1986; Tanner, 1992). Groshong and Usdansky 
(1988) and Cruikshank et al. (1989) attempted to 
simulate the formation of duplexes with a planar roof 
thrust. However, their models, which were based on the 
assumptions of constant bed thickness and bed length or 
a different topology of the axial planes delimiting the 
forelimbs of the horses, resulted in corrugated roof 
thrusts. We previously presented a kinematic model, 
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based on a coordinate transformation, that simulates 
flexural slip parallel to an active fault surface (Contreras 
and Suter, 1990) and made numerical experiments with 
an algorithm (Contreras, 1991) that is based on this 
kinematic model. These experiments showed that our 
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Fig. 1. Examples of duplexes with a planar roof thrust modeled with a 
kinematic algorithm that assumes displacement of constant length, 
parallel to the underlying active fault segment, for all the displaced 
particles throughout the medium (Fig. 2). For the definition of the 
duplex parameters (u: displacement along the ramps, I: ramp length, and 
s: separation between the ramps in the undeformed state) see Fig. 3. The 
ramp series has a constant dip and spacing in the undeformed state, and 
the deformation sequence is in the direction of tectonic transport, with 

equal displacement along each ramp. 
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model is capable of simulating the formation of duplexes 
with a perfectly planar roof thrust (Fig. 1). 

It is the purpose of this paper to analyze in more detail 
under what conditions our kinematic model simulates 
duplex systems with a planar roof thrust. For that 
purpose we define a parameterization of duplex struc- 
tures. We then investigate by computer experiments with 
our algorithm, as well as analytically, where in this 
parameter-space duplex structures with a planar roof 
thrust form. Eventually, we discuss why attempts by 
other authors failed to simulate duplex structures with a 
planar roof thrust. First, however, we shall summarize 
the characteristics of the kinematic model used in our 
simulation of duplex structures. 

KINEMATIC MODEL 

The kinematic model used in this paper for the 
simulation of duplex structures was introduced by 
Contreras and Suter (1990). Our model only applies to 
regions being deformed by shortening or extension, 
whereas natural duplex systems have also been observed 
in regions being deformed by strike-slip (Twiss and 
Moores, 1992). Furthermore, the model is two-dimen- 
sional and limited to the cross-sectional geometry of 
duplexes. It is based on a coordinate transformation to a 
more deformed state and is formulated analytically in 
terms of the less deformed configuration (forward 
modeling, Lagrangian description). The medium is 
subdivided into homogeneous displacement vector fields 
that are delimited by the planes bisecting the fault 
inflections (Fig. 2). The displacement trajectory is of 
constant length for all the displaced particles throughout 
the medium and parallel to the underlying active fault 
segment (Fig. 2). Consequently, the deformation path is 
continuous but not smooth and causes an angular style of 
parallel folding, except in the forelimb of the resulting 
fold (area to the right of axial plane III in Fig. 3a) where 

the layer thickness is not conserved (see Appendix). Our 
model also considers an external component of fault- 
parallel simple shear (Fig. 2) that is uniformly distributed 
throughout the hanging wall. The transformation can be 
expressed as 

+ % ;] X [i”+“;htanti], (1) 

where the left side of the equation represents the 
coordinates in the deformed state. The first three matrices 
on the right side of the equation represent a rigid-body 
rotation around the intersection of the rigid-body 
displacement path with the axial plane a (rotation R in 
Fig. 2), and the vector on the right side of the equation 
represents shearing and rigid-body translation. Expand- 
ing equation (l), the general expression that controls the 
displacement u of a particle p parallel to a given fault 
segment (Fig. 2) becomes 

pi = bX + u + htan@)cosa! 

- [py +fXcot(cr/2) -f,]( 1 - cosa)tan(a/2) 

pk = pY + (pX + u + htan+)sinar (2) 

+ [pY +f&ot(a/2) -f,]sincr tan(a/2), 

where px, py and pk, pb (Fig. 2) are the coordinates of the 
particle before and after the transformation, respectively, 
h is the distance of the particle from the fault, $ is the 
angle of external simple shear applied to the hanging wall 
(clockwise increases of I,+ are considered positive), cc is the 
change in dip of the fault at the inflection (counter- 
clockwise changes of c1 are considered positive), andf is 
the point of intersection between the fault inflection and 
the corresponding axial plane (Fig. 2). A complete 

a 

Fig. 2. Configuration and parameters of the kinematic forward model used in the simulation of the duplex structures (from 
Contreras and Suter, 1990). The model is based on a coordinate transformation that simulates flexural slip parallel to the 
active fault surface. Note that the axial planes delimiting the forelimb of the fault-related fold do not bisect the dip domains of 
the hanging wall, but are parallel to the plane bisecting the fault inflection between the ramp and the roof thrust. This results 
from our constraint that the displacement vectors be of constant length and parallel to the underlying fault. Further 

explanations in the text. 
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derivation of equations (1) and (2) from first principles is 
provided in Contreras and Suter (1990). A more general 
formulation of these operations, which are common in 
computer graphics (for example Foley and van Dam, 
1982), has recently been presented by De Paor (1994). 

The inhomogeneity of the displacement vector field 
across axial planes introduces longitudinal and angular 
shear strains. An analysis of this strain is provided in 
Contreras and Suter (1990) and summarized in the 
Appendix. Furthermore, it can be shown that the defined 
transformations do not cause a change in area; the 
deformation is isochoric, which is typical of deformation 
by simple shear (Truesdell and Toupin, 1960). 

DUPLEX STRUCTURES WITH A PLANAR ROOF 
THRUST 

In our kinematic model for the formation of duplex 
structures with a planar roof thrust we assume that all the 
ramps have the same dip in the undeformed state and that 
the deformation is sequential in the direction of tectonic 
transport (Figs 1 & 3). This is based on the observation 
that ramps of natural duplexes often have a constant dip 
(Tanner, 1992) and sequential deformation in the 
direction of tectonic transport is characteristic of duplex 
structures (Boyer and Elliott, 1982). 

We first examine general cases of duplex systems, 
where the spacing of the ramps varies, and analyze the 
displacement conditions that lead to a planar roof thrust. 
We then analyze duplex systems with a regular ramp 
spacing and equal displacement along each ramp and 
derive a general expression for the formation of a planar 
roof thrust under these specific conditions. This is 
justified, as the ramps of natural duplexes often have a 
regular spacing that is linearly related to the thickness of 
strata involved in the duplex (Liu and Dixon, 1995). No 
external simple shear is applied during the formation of 
our duplex models; consequently I,$ vanishes from 
equation (2). 

We describe duplexes by three parameters: the separa- 
tion s between ramps in the undeformed state (measured 
parallel to the floor thrust), the ramp length I in the 
undeformed state, and the displacement u along the 
ramps (Fig. 3a). (Also marked on Fig. 3 is the dip CI of the 
ramps. However, as we will see below, the formation of 
duplex systems with a planar roof thrust is independent 
of the ramp dip.) Furthermore, we combine these three 
variables into the two non-dimensional parameters l/s 
and u/s, which permits characterization of any duplex by 
these three variables in a two-dimensional space (Fig. 4). 

We also use in this paper the following conventions: 
displacements are considered small where u < I and large 
where u > 1. In our equations, duplexes with a planar roof 
thrust, small displacements, and n horses are coded d(n), 
whereas duplexes with a planar roof thrust, large 
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Fig. 3. Formation of a duplex with a planar roof thrust and two horses 
for large displacements: (a) Parameters used in the description of duplex 
systems are the separation s between the ramps in the undeformed state 
(measured parallel to the floor thrust), the dip a and length I of the 
ramps in the undeformed state, and the displacement ut along the first 
ramp. The displacement U, along the ramp is large (u, >I). (b) 
Geometric relation used in the derivation of equation (4). (c) Final 
deformed geometry of the duplex. The constant dip of the ramps causes 
the axial planes to be parallel. A planar roof thrust results when the axial 
planes III and I’ are identical, which is the case when the sum of the 
displacements along the two ramps equals their separation (equation 

4). 

displacements and n horses are coded D(n). The number 
of horses n is defined as the minimum number of horses 
required to form a planar roof thrust. For example, in the 
duplexes of Fig. 1, the minimum number of horses 
required to form a planar roof thrust is, from top to 
bottom, four, two, and three. A similar labeling system is 
also used for duplexes with a corrugated roof thrust on 
Fig. 4, where r(n) stands for a duplex with 12 horses and 
small displacements and R(n) for a duplex with IZ horses 
and large displacements. 

Mitra and Boyer (1986) introduced a duplex classifica- 
tion, which is based on a comparison between u and s: 
according to these authors, for U<S the duplex is 
hinterland dipping, for u = s the structure is an antiformal 
stack, and for u > s the duplex is foreland dipping. We 
adopt the duplex classification by Mitra and Boyer 
(1986), but will define below different parameter ranges 
for these three classes of duplexes. 

Duplex structures with two horses and large displacements 

(U’l) 

Consider a simple ramp of length I that forms an angle 
c1 with the upper and lower detachments and a large 
displacement ui > 1 along the ramp (Fig. 3a). After the 
displacement, the medium forms a fault-related fold. 
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Note that the axial planes delimiting the forelimb do not 
bisect the dip domains of the hanging wall, but are 
parallel to the plane bisecting the fault inflection between 
the ramp and the roof thrust. This results from our 
constraint that the displacement vectors be of constant 
length and parallel to the underlying fault. Consider now 
a new ramp with the same geometry as the first one (Fig. 
3~). To form a duplex with a planar roof thrust, it is 
necessary to transport the axial plane (III) along the 
detachment segment of the new fault until it coincides 
with the axial plane (I’). This occurs when the displace- 
ment u2 satisfies the condition 

u2 = s - (241 + I,) + 1 for u2 > 1, 

where Z, = Isinatan(a/2) + Zcosa (Fig. 3b). 

(3) 

Using the trigonometric identities: 

since = 2sin(a/2)cos(a/2) 

and 

cosa = cos2(a/2) - sin2(a/2), 

it can be demonstrated that 1, = I, therefore equation (3) 
can be expressed as 

ui f2.Q =s for ut, u2 > I. (4) 

In the special case of equal displacements u1 = u2 = u, 

equation (4) reduces to 

02 (u/s = l/2 for u/s > l/s. (5) 

This configuration is a vertical line in the u/s vs I/s 
diagram on Fig. 4, where it is labeled 02. The condition 
that the displacement has to be twice the size of the 
separation between the two ramps in order to form a 
duplex system with a planar roof thrust was already 
recognized, if not derived mathematically, by Mitra and 
Boyer (1986). An increase in shortening (u/s > l/2) results 
in a duplex with a corrugated roof thrust and a three-fold 
repetition of the stratigraphic sequence (region R3 in Fig. 
4). If we decrease the shortening (u/s< l/2), our kine- 
matic model generates a duplex system with a corrugated 
roof thrust and a two-fold repetition of the stratigraphic 
sequence (region R2 in Fig. 4). 

We now analyze the planarity of the roof thrust in our 
duplex model in terms of strain analysis. From equation 
(A3), it follows that the hanging wall ramp (base of the 
forelimb) of the first fault-related fold (I on Fig. 3a), to 
the right of the axial plane (III), does not become 
elongated, as its orientation is parallel to the transport 
direction. Therefore, the hanging wall ramp is accom- 
modated on the backlimb of the consecutively formed 
fold without any corrugation. Furthermore, Fig. 3(a) 
shows that the hanging wall ramp of the first formed 
horse passes through two fault inflections. As both ramps 
have the same geometry, the two inflections only differ in 
sign, such that LX:! = - c~i, yr= 0, and &xi = 0 in equations 
(A2) and (A4), respectively, if no external simple shear is 

applied to the hanging wall (II/ = 0). Consequently, the 
quadratic elongation in equation (Al) reduces to A = 1 
(case of no elongation). Moreover, from equation (A4) it 
follows that the orientation of an arbitrary material line, 
after having passed through these two fault inflections, 
remains the same as in the undeformed state (S’ = S). 

From equation (3) and Fig. 3 we can also infer that 
structures with horses that are not imbricated (repre- 
sented in Fig. 4 by the region labeled B) are formed when 

l/s < 1 - 2u/s, (6) 

whereas structures with overlapping horses (duplexes and 
antiformal stacks) form for l/s ratios larger than this 
value. On the u/s vs l/s diagram (Fig. 4) the limit between 

the regions representing these two major types of 
structures is marked by a line in the lower left part of 
the diagram. 

Duplex structures with two horses and small displacements 

(u<U 

Systems in the undeformed state with the geometry of 
Fig. 3, but a small displacement u1 ~1 along the first 
ramp, form in the deformed state a duplex with a planar 
roof thrust (Fig. 5) if the displacement u2 satisfies the 
condition 

u2=s---I for u2 < I (7) 

or, in the special case of equal displacements u1 = u2 = u, 
the condition 

d2 {u/s + l/s = 1 for u/s < I/s. (8) 

This configuration is a straight line with a slope of (- 1) 
in the u/s vs l/s diagram in Fig. 4, where it is labeled d2. 
Based on similar reasoning as in the former case (where 
u/s > l/s), it can easily be shown that the roof thrust of 
this duplex system is not corrugated. 

In the case of u/s + l/s < 1, the two horses of the duplex 
system are partly imbricated and the roof thrust does 
become corrugated. This configuration is labeled r2 in 
Fig. 4. In the case of u/s + l/s > I, the final configuration is 
a hinterland-dipping duplex with a corrugated roof 
thrust, and three horses are required until the duplex 
system stops growing vertically. This type of structure is 
shown on Fig. 4 with the label r3. 

Duplex structures with more than two horses 

Synthetic duplex systems with more than two horses, 
created with our kinematic algorithm, can also develop 
planar roof thrusts (Fig. 1). We first deal with the case of 
a duplex with three horses and then derive a general 
expression for duplexes with n horses. Figure 6 illustrates 
the formation of a duplex with three horses and small 
displacements (UC Z). For simplicity we consider the 
special case of a duplex system with a smooth front 
(without step). Figure 6(a) shows this configuration at the 
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I u/s \ 
312 / 

02 

Fig. 4. Location of duplexes in a u/s vs I/s diagram and representative structures. Duplexes with a planar roof thrust and n 
horses are labeled d(n) for small displacements (U ir) and D(n) for large displacements (u > r). Similarly, duplexes with a 
corrugated roof thrust and n horses are labeled r(n) for small displacements and R(n) for large displacements. Antiformal 
stacks are located in the area labeled a-A (A represents the region below and a the region above the line separating large from 
small displacements), and foreland-dipping duplexes in the region labeled F. Antiformal stacks with vertical growth are 
located on the line labeled At~uv (Av represents the segment below and av above the line separating large from small 
displacements), and the point marked I represents the special case of an antiformal stack with a chevron geometry. The region 

labeled B corresponds to duplexes with horses that are not imbricated. Further explanations in the text. 

a 

b 

Fig. 5. Formation of a duplex with a planar roof thrust for the case of 
two horses and small displacements (u < r). (a) Geometry after execution 
of the displacement u,. (b) Final deformed geometry of the duplex. This 
type of structure is characterized by equation (8) and its location in Fig. 

4 is labeled d2. 

stage when a displacement u1 has occurred along the first 
ramp such that a part of the hanging wall has moved to 
the right of axial plane (I’). Figure 6(b) shows the 
geometry of this structure after the occurrence of the 
displacement u2 along the second ramp. To form a three- 
horse duplex with a smooth front, it is necessary that 

242 =si -ui. (9) 

To obtain a duplex with a planar roof thrust (Fig. 6c), the 
displacement u3 has to become 

u3 = 2.41 - (s, - I). (10) 

The front of the hanging wall is also smooth if u3 fulfills 
the condition 

u3 =s2-u2. (11) 

Combining equations (9) to (11) and assuming equal 
displacements U=U1=242=243 and equal spacing 
s = s1 = ~2, we obtain the general expression for duplexes 
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Fig. 7. Kinematic sequence showing the formation of a duplex with a 
planar roof thrust for the case of three horses and large displacements 

I 
(U > r). The roof thrust only becomes planar after the imbrication of the 

I 
I 

s2 
third horse (Fig. 7b). This type of structure is characterized by equations 

(15) and its location in Fig. 4 is labeled 03. 
III” 

ll# Ii’-I” Ill:-II” ; ; 

Fig. 6. Kinematic sequence showing the formation of a duplex with a 
(15) 

planar roof thrust for the case of three horses and small displacements 
(U-C& The planar roof thrust only forms after the imbrication of the 

These expressions describe, similarly to equation (12), 

third horse in Fig. 6(c). This type of structure is characterized by two straight line segments labeled 03 in Fig. 4. 

equations (12) and its location in Fig. 4 is labeled d3. We now generalize equations (5), (S), (12), and (15), 
which are valid for two and three horses, to formulate 
expressions for infinite series of duplexes, coded d(n), 

that have a planar roof thrust, are composed of three 
with a planar roof thrust, n horses, and small displace- 

horses, and have small displacements along their ramps: 
ments, as well as for infinite series of duplexes, coded 
D(n), with a planar roof thrust, n horses, and large 

d3 
u/s = l/2 displacements. These series have to satisfy one of the 

u/s + 1/2s = 1 
for u/s < l/s and n = 3. following conditions: 

(12) 44 
u/s = l/2 

for u/s < I/s, (16a) 

Numerical experimentation with our kinematic algo- 
u/s + Z/[s(n - l)] = 1 

rithm confirms that duplexes with geometric and kine- 
matic parameters satisfying either one of these two 
equations develop a planar roof thrust. In Fig. 4 this 

D(n) I u/s = (n - 1)/n 

u/s + l/s = 1 
for u/s > I/s. (16b) 

type of structure is located on two straight line segments 
labeled d3. In these expressions, duplexes with a planar roof thrust 

We now deal with the case of a duplex with three horses and small displacements d(n) are located on the vertical 

and large displacements (u> I>. A special case of this line u/s = l/2 and duplexes with large displacements D(n) 

structural configuration is shown in Fig. 7, where u and s on the straight line u/s + Z/s = 1 (Fig. 4), regardless of their 

are constant. This structure forms when the axial planes number n of horses. 

II and I’ coincide (Fig. 7b), which occurs when the A more detailed analysis is necessary to delimit the 

displacement u = s - I for u > I, or equivalently domain and co-domain of these equations. Separating E/s 

u/s + z/s = 1 for u/s > l/s. (13) 
in equation (16a) and substituting u/s= l/2 we obtain 

A second condition can be derived, based on the 
l/s = (n - 1)/2, (17) 

observation that u = 2s/3 for u > 1 (Fig. 7a) or where n is the minimum amount of horses required to 

u/s = 213 for u/s > I/s. (14) 
form a duplex with a planar roof thrust. Equation (17) 
can be written as the sequence 

Combining equations (13) and (14), we obtain the 
general expression for duplexes with three horses, a 

I/s = l/2, 1, 312, . . . n = 1, 2, 3.... (18) 

planar roof thrust, and large displacements along their This means that as we move upward along the vertical 

ramps: line u/s = l/2, n increases by 1 at each l/2-interval of the 

J. CONTRERAS and M. SUTER 

a 

03 
u/s = 213 

u/s + I/s = 1 
for u/s > I/s and n = 3. 
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Z/s-axis. Furthermore, u/s = l/2 bounds u/s + l/[s(n - l)] 
= 1. Therefore, the co-domain of equation (16a) can be 
delimited as follows: 

d(n) 
( 

u/s = l/2 for (n - 1)/2 5 l/s > (n - 2)/2 
u/s + Z/[s(n - l)] = 1 for l/2 > u/s > 0. 

(19) 

Similarly, in equation (16b) the straight line u/s + l/s 
= 1 is piecewise continuous with respect to n, and each of 
these parts is limited by the sequence u/s = (n - 1)/n, such 
that 

( 

u/s = (n - 1)/n for l/n > I/s > 0 

D(n) u/s + z/s = 1 for (n - 1)/n > u/s > (20) 
(n - 2)/(n - 1). 

Equations (19) and (20) are the general expressions 
that characterize duplexes with a planar roof thrust. Note 
that in equation (20) u/s= (n- 1)/n converges to 1 for 
very large values of n (where n is the minimum number of 
horses required to form a planar roof thrust). This 
number was already recognized by Mitra and Boyer 
(1986) as critical for the formation of antiformal stacks, 
which these authors define by u = s. As described above, 
these structures can contain an infinite number of horses, 
which implies that duplexes fulfilling this ratio only grow 
vertically, but not in width. This corresponds to the line 
labeled as Av-av in Fig. 4, where the corresponding 
structures are also illustrated (Av represents the segment 
below and av the segment above the line separating large 
from small displacements). Larger u/s ratios cause 
duplexes to dip in the foreland direction (region labeled 
Fin Fig. 4). 

The families of straight lines represented by equa- 
tions (19) and (20) are located in the u/s vs Z/s diagram 
in Fig. 4 to the left of the vertical line u/s= l/2 and 
below the line u/s + l/s = 1 as well as on these two lines. 
This leaves a region in the diagram, to the right and 
above these two lines, which is additionally delimited 
by the region for foreland-dipping duplexes (u/s > 1). 
This remaining area, labeled u-A (A represents the 
region below and a the region above the line separating 
large from small displacements), holds structures that 
we have not further explored, but which are probably 
best described as antiformal stacks. Examples of these 
structures are shown in Fig. 8. Therefore, rather than 
to consider antiformal stacks to be limited to the ratio 
u/s= 1, as defined by Mitra and Boyer (1986), we 
propose that these structures are characterized by l/ 
2<u/sll. It seems to us more plausible to define 
antiformal stacks by a range of u/s values, rather than 
the specific u/s value of 1, which is unlikely to be 
satisfied by natural duplexes. Note, however, that the 
lower limit of this range (u/s= l/2), which delimits 
antiformal stacks from hinterland-dipping duplexes, is 
defined arbitrarily. Some duplex models with this u/s 
ratio are shown in Fig. 9. 

ufs = 518, 11s = l/2 

UIS = 11s = 518 

UIS = w3,lls = 314 

Fig. 8. Examples of duplex models with a u/s ratio of 5/S, correspond- 
ing to the region labeled a-A in the U/S vs l/s diagram on Fig. 4. These 
structures are probably best described as antiformal stacks, even though 
antiformal stacks, as originally defined by Mitra and Boyer (1986), are 

limited to the ratio u/s = 1. 

Fig. 9. Duplex structures with a planar roof thrust, modeled with our 
algorithm, where the thrust ramps are composed of various segments or 
have steps at several stratigraphic levels. The model parameters are 
u/s=l/s= l/2. The results indicate that the equations derived in this 
paper for the formation of duplexes with a planar roof thrust are 

independent of the ramp geometry. Further explanations in the text. 

DISCUSSION 

Many duplex simulations (for example Mitra, 1986; 
Groshong and Usdansky, 1988) are based on the fault- 
bend fold model introduced by Suppe and Namson 
(1979) and Suppe (1983) for the formation of folds 
above ramps. The model assumes conservation of bed 
length and bed thickness. These assumptions are 
approximated by the construction of symmetrical axial 
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surfaces that bisect the dip-domains in the backlimb 

(above the ramp) and in the forelimb of the resulting 
hanging wall fold. The shape of the forelimb is related to 
the dip of the ramp by trigonometric expressions with 
quadratic terms (Suppe, 1983). As a result, variations in 
the dip of the ramp are amplified in the dip of the 
forelimb of the hanging wall fold. This is crucial to the 
simulation of duplexes with a planar roof thrust, as in this 

case the forelimb cannot return to its initial state of 
orientation and distortion during passive translation 

along an underlying, subsequently active ramp. This 
explains why the duplex models by Groshong and 
Usdansky (1988), which are based on Suppe’s approach, 
have a corrugated roof thrust, despite those authors’ 
explicit intention to simulate duplexes with a planar roof 
thrust. The formation of a planar roof thrust in the 
duplex model by Boyer and Elliott (1982), a graphic 
experiment often referred to in the literature, is for the 
same reason kinematically not feasible. As explained 
above, no perfectly planar roof thrust can form in a 

duplex under flexural slip parallel to the active fault, if the 
original bed thickness remains preserved in the forelimbs 
of the horses. 

Shi and Wang (1987), Johnson and Berger (1989), 
Cruikshank et al. (1989) and more recently Hardy (1995) 
have modeled fault-bend folds and duplexes in terms of 
domainal velocity distributions. Their models differ 
partly in the topology of the domain boundaries and in 
the velocity magnitudes assigned to the domains. Shi and 
Wang (1987) assume the horizontal velocity component 
to be constant within the hanging wall, whereas the 
velocity is assumed to be constant parallel to the fault 
surface in the models by Cruikshank et al. (1989) 
Johnson and Berger (1989) and Hardy (1995). In most 
of these models (for example, Cruikshank et al., 1989) 
the velocity discontinuities are oriented such that origin- 
ally horizontal beds experience no change in thickness or 
length as the thrust sheet moves over the ramp. For this 
reason these models produce the same fold shapes as the 
Suppe (1983) model and result in corrugated roof thrusts 
(Cruikshank et al., 1989). 

Our model is different from the ones mentioned above, 
which are not successful in simulating duplex systems 
with a planar roof thrust. Our formulation [equation (1)] 
is based on the superimposition of a vector displacement 
field and a strain field (Contreras and Suter, 1990). This 
model (Fig. 2) allows simulation of an external compo- 
nent of layer-parallel shear and furthermore quantifies 
the strain that occurs during the transformation across 
domain boundaries (see Appendix). These are major 
advantages compared to other models. For example, the 
representation of the medium by a mesh of quadrilateral 
elements permits the visualization of the distortion of the 
medium after the execution of these transformations for 
the grid nodes (Contreras and Suter, 1990). In our model, 
the axial planes delimiting the forelimb of the hanging 
wall fold are parallel to the plane bisecting the angle 
between the roof thrust and the ramp (Figs 2 & 3a). This 

satisfies our constraint that the slip vectors be of constant 
length and parallel to the underlying fault segment and 
leads to the formation of duplexes with a planar roof 
thrust (Fig. 1). 

The equations derived in this paper for the formation 
of duplexes with a planar roof thrust are independent of 
the ramp geometry; the ramp dip cc vanishes from the 
equations defining duplexes with a planar roof thrust. 
This is another difference to previous work, since most 
other models (for example Groshong and Usdansky, 
1988) assume a specific ramp angle (typically 2&25”), 
and the results are therefore specific to that angle. Our 
model, on the other hand, is valid for any dip of the 
ramps and is independent of the ramp geometry. This is 
shown in Fig. 9, where we tested equations (19) and (20) 
for ramps that are composed of several segments or have 
steps at several stratigraphic levels. In these cases, the 
ramp length I is taken as the sum of the lengths of the 
individual segments. These duplex systems also form a 
planar roof thrust and have the same location in a u/s vs 

l/s diagram (Fig. 4) as duplexes with a simple ramp 
geometry. 

It would have been interesting at this point to compare 
our models with published observations of natural 
duplex structures with a planar roof thrust. However, 
the fault network of natural duplexes is much less regular 
than in our idealization and there are variations in the 
amount of displacement between the individual horses. 
Furthermore, it is often not clear from published duplex 
sections how much of the structure is observed and how 
much is inferred, especially in the subsurface. Some 
planar roof thrusts are well documented, whereas the 
subsurface part of the corresponding sections is 
obviously much less constrained and its construction 
may be based on assumptions different from ours, such as 
constant bed length. 

CONCLUSIONS 

Duplexes can be characterized by three parameters 
which are the separation s between ramps, the ramp 
length 1, and the displacement u. Foreland-dipping 
duplexes are characterized by u/s > 1, hinterland-dipping 
duplexes by u/s < l/2, and antiformal stacks by l/2 < 
u/s5 1 (Fig. 4). This modifies the intervals given for these 
structures by Mitra and Boyer (1986). Duplexes with 
u/s = 1 are a special case of an antiformal stack that only 
grows vertically, but not in width. Structures with horses 
that are not imbricated (represented in Fig. 4 by the 
region labeled B) are formed when l/s< 1-224/s, whereas 
structures with overlapping horses (duplexes and anti- 
formal stacks) form for Z/s ratios larger than this value. 

The formation of duplexes with a planar roof thrust, 
which are common in nature, can be simulated success- 
fully if we use a transformation where the displacement 
length is constant and parallel to the active fault surface. 
Attempts by previous workers, on the other hand, which 
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Strain analysis 

located on the line u/s + Z/s = 1 and on a family of straight 
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The inhomogeneity of the displacement vector field across axial 
planes causes an internal deformation of the stratigraphic layering by 

We also show that the formation of duplexes with a simple shear. The quadratic elongation 1 of an arbitrarv material line of 

planar roof thrust is independent of the dip or internal 
the-model, after having passed through m fault segments, can be 

geometry of the ramps, whereas most former duplex 
expressed as 

models were limited to a specific dip or range of dips of 
I = (co& + yrsin6)* + sin*& (Al) 

the ramps. where 6 is the initial orientation (measured counterclockwise) of the line 
with respect to the x-axis and yT is the shear strain induced by the 
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passed through M fault segments can be expressed as 

6’ = arctan 
( 

sin8 

co@ + yrsin8 > 
+$, 

i=l 
(A4) 

where the first term on the right side of the equation represents the 
rotation caused by the external simple shear and Cai passive rotations 
induced by the transport of the line across the fault inflections (Fig. 2). 
Equations (Al) to (A4) are more general expressions of equations 
presented in Contreras and Suter (1990). 

The forelimb thickness of the horses does not remain preserved under 
flexural slip parallel to the active fault; a layer with stratigraphic 
thickness r changes its thickness in the forelimb to t*. This change in 
thickness can be calculated as follows (fig. 11 in Contreras and Suter, 
1990): 

t* = t’coslj (A5) 

where t’ is given by 

1’ = ?(A:/2 + 1) (A6) 

and rt by 

rj=Js;+S’-K/2, (A7) 

where lr is the quadratic elongation in the direction 8r= 6-x/2, 
perpendicular to the stratigraphic layering of the forelimb with dip 6. 
Figure Al shows this change in thickness for the special case of a single 
ramp and no external simple shear. 


